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The increasing implementation of ICT and EMS in the current paradigm of
smart buildings in smart cities has enabled an easier availability of a huge
amount of heterogeneous and complex building-related data in form of
time series.
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When a stock of buildings is analysed the main objective of energy
profiling is to discover homogeneous classes of
buildings/customers according to the concept of load profiles similarity.

On the other hand, energy profiling at individual building level is aimed at
supporting (e.g., energy demand prediction,
fault detection and diagnosis (FDD), energy benchmarking) performed at
sub-system or whole building level.

Detailed diagnostic analysis Load profiles classification
at single at multiple
building/customer level buildings/customers level
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Which are the possible implications
of the energy profiling process at
individual building?

Which are the main methodological
steps of energy profiling?

Why energy profiling?
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Who are the different actors in the smart Which are the possible implications of
city environment for which the process of the energy profiling process at buildings
energy profiling could be beneficial? stock level in a smart city environment?
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Electrical/Thermal
daily load profiles

Data pre-processing

module

Analytics module — Typical daily load profiles evaluation

Grouping of similar daily
load profiles

1) Domain cxpert (day of the
week, month, season)

2) Unsupervised technigues
(direct clustering)

3) Unsupervised techniques
(indirect clustering)

Building/Customer 2

Building/Customer n

Typical daily load profiles evaluation

The typical daily load profiles are evaluated

Building/Customer 1

through statistical measures (e.g. mean, median)
for each group of homogeneous daily load
profiles

Selection of the reference daily load
pattern

One of'the typical daily load profiles is selected as

reference daily load pattern.

Normalised reference daily load pattern
Customer 1

(c.g., max-normalisation, min-normalisation,
max/min-normalisation)

Normalised reference daily load pattern
Customer 2

Normalised reference daily load pattern

Customer n
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In a first step, the collected raw data in
form of time series are analysed
through different statistical methods
to identify potential missing values
and punctual outliers that must be
replaced or removed.
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In a second step, the original time
series is chunked in fixed length
windows (sub-sequences). The sub-
sequences, representing the daily load
profiles, are organized into a MxN
matrix where M is the number of daily
load profiles while N depends from the
data granularity.




This phase of the framework is performed at individual
building/customer level and it is aimed at identifying groups of
homogenous profiles through a data segmentation phase.

The typical profiles can be then evaluated through statistical measures
(e.g. mean, median) calculated in each group of homogenous daily load

profiles identified in the data segmentation phase. To this purpose,
data segmentation may be performed following:

1. Domain expert based approach.
2. Data mining approach by using unsupervised techniques.

3. Indirect clustering through data reduction methodes.




A

Domain expert based approach

It is completely driven by the domain knowledge
of the analyst and it is aimed at generating subsets
of daily load profiles that are supposed to be
subjected to homogenous boundary conditions.

Data mining approach by using unsupervised

techniques

Unsupervised pattern recognition techniques such
as cluster analysis allows load patterns to be
identified in a not pre-determined time domain.

Indirect clustering through data reduction

methods

A further approach for the data segmentation and
profiles extraction relies on indirect clustering,
where the object of clustering are features
extracted from the load profiles.
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WHICH DATA SEGMENTATION?

Domain expert based approach : Unsupervised pattern recognition
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The knowledge of typical load profiles at single building/system level
offers the opportunity to address complex emerging issues in energy
management at individual building level.

 Improve the accuracy and robustness of energy consumption
forecasting models.

 Provide relevant information for the calibration of simulation
models.

 Implementation of Fault Detection and Diagnosis (FDD) strategies.

* Energy benchmarking over time.

* Exploitation of on-site renewable energy sources production.

* Support the optimal operation of a building at multiple levels Active
demand response applications.
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is a data mining method to identify all
associations and correlations between attribute values over time.
The output is a set of rules that are used to represent patterns of
attributes that are frequently associated together (if A happens, B
will also happen, A is called and B is the ).




Moreover, the mining of typical load profiles in buildings could be considered a
preliminary phase in customers’ classification.
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After the selection and normalization/standardization of the reference
load pattern for each customer/building, they are processed in order to
discover typical classes of customers/buildings and classify them
according to appropriate variables.

The whole process consists of three different steps:
e |dentification of n customer classes of buildings/customers.

 Definition of the normalised reference load pattern for each
customers’ class (e.g. centroid).

 Enrichment of the database with additional attributes (categorical or
numerical) for each load profile to perform a supervised
classification process.




The identification of n customer classes of buildings/customers unfolds
through the application of unsupervised pattern recognition
techniques such as hierarchical or partitive cluster analysis.

Task | Method | Reference

Kohonen Self-Organising-Maps (SOM)

") [10, 18, 33]
..'E K-means clustering (KM) [10, 11, 13, 14, 18, 22, 33]
§° Fuzzy K-Means clustering (FKM) [17, 18, 20, 22, 29]
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Profile_1 == Profile_2 = Profile_3
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The customers’ class label is defined as a categorical dependent
variable which can be predicted with a classification model using
additional attributes for the supervised classification process.

e

A

. ™
Explanatory variables

* A priori indicators (e.g., type of activity,
voltage level, type of contract)

i+ Field indicators (e.g., shape indicators) :
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The described methodology represents a robust and useful tool to
easily estimate for a new statistical object its membership to a specific
class of customers/buildings in order to:

* Implementing more effective energy management strategies
through targeted financial demand response programs.

 Better manage the grid operation and the interactions between
energy consumption and production.

 Promote the modification of a load profile that allows the demand
profile to be flat or to follow the generation pattern for grid stability.

 Extract knowledge about building energy use patterns for fully
exploiting the benefits of energy management also at micro grid
level.

* Assess the impact of DSM and DR initiatives over time.




Application of a pattern recognition procedure applied to electrical
consumption data related to a heating/cooling mechanical room of
Politecnico di Torino campus in Turin (ltaly)

e The system includes both hot and chilled water circuits of the building with the
corresponding auxiliary pumping systems.

* The circulation pumps installed are different for the two circuits and have an overall
designed electrical power of 120 kW.

 The hot water is produced through a district heating heat exchanger located in separate
area of the campus.

*  The chilled water is provided by two chillers (with a total design electrical power of 220
kW and a rated cooling capacity of 1120 kW) and a water to water reversible heat pump
(with a design electrical power of 165 kW and a rated capacity of 590 kW in cooling
mode).

* The two chillers and the heat pump are connected in parallel and the heat rejection is
operated through a geothermal water source in a closed loop. The operation of chillers is
controlled according to the cooling load of building to maintain supply/return
temperature of the chilled water at 7/12 ° C.
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Electrical/Thermal Data pre-processing
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In a first phase the daily load profiles were
normalised in the (0,1) range on the maximum
power value of each profile. A hierarchical clustering
algorithm with Ward linkage method was then
implemented to group the normalised load profiles.

Four different clusters are discovered:

“Shape 1” = Cluster where the electrical energy
. consumption of the system is due to the
oy operation of the auxiliary pumping system of the
hot water circuit
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The normalized load profiles grouped in cluster “Shape 2” were rescaled to their original values
to perform a further analysis.

A segmentation of the energy profiles belonged in this cluster was performed and three
different groups of daily profiles with magnitudes significantly different were discovered.

Unsupervised pattern recognition Supervised classification
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In order to characterise the typical operational patterns of the clusters
” the two days with the

o

selected for a further investigation.
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take advantage in developing different strategies involving
energy savings opportunities such as the installation of PV or a thermal/electrical
storage systems. Information about typical daily patterns could help in the
selection of the most appropriate tariff plan or proper DSM strategies and
implementation of anomaly detection strategies. Fundamental aspect involves
also the assessment of energy savings consequent to energy conservation
measures that can be achieved comparing load patterns before and after a
retrofit action.

(ESCO) could employ knowledge about building load
profiles to develop energy savings and conservation measures along with other
energy services.

(TSOs) and (DSOs)
In the case of smart electricity grids or district heating installations could employ
profiling tools as robust support to DSM strategies aimed at improving the grid

balance and developing proper tariff plans for the different customers’ categories.

may take advantage from load profiles characterization to identify
which actions could have the major effects over a specific group of consumers.




 Energy management systems capable to exploit the potential of building
related-data for energy management and operation by means of a data
analytics technologies represent a powerful opportunity in the building physics
sector.

* Extracting useful knowledge by coupling building physics domain expertise
with data analytics procedures makes it possible to discover operational rules
to support building operation and correlations that are not so obvious for
experienced energy management.

* The diversity of data analytics techniques and their combination needs robust
frameworks.

* The knowledge of energy consumption patterns at single system/building
makes it possible to promote their optimisation through changes in energy
demand, load shifting, the detection and diagnosis of anomalies related to
uncorrected system operations or users’ behaviour.
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